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Abstract: The feasibility of Mid-Infrared (MIR) lasing in Erbium-doped Gallium Lanthanum 

Sulfide (GLS) micro-disks was investigated. Based on state-of-the-art Chalcogenides micro-disk 

resonators parameters, lasing was simulated and shown to be possible. 
OCIS codes: (140.3070) Infrared and far-infrared lasers; (140.3500) Lasers, erbium; (140.3945) Microcavities  

 

1. Introduction 

Chalcogenide glasses (ChGs) are attractive for the development of infrared integrated optical devices for their 

distinguished mechanical and optical properties [1,2]. Integration of multiple monolithic components on a single 

substrate enables system-on-chip applications and minimization of size and cost. A basic requirement for such 

systems is the demonstration of monolithic light sources working in appropriate spectral regimes.  

To date, lasing in ChGs has been reported for Nd-doped GLS fiber [3] and laser written waveguides in bulk GLS 

[4] at 1080 nm, Nd and Tm-doped Tellurite micro-spheres at 1060 nm and 2 µm, respectively [5,6], and most 

recently Nd-doped GLS micro-sphere at 1080 nm [7]. In addition, theoretical studies showed the possibility of 

lasing at 4.5 µm and 1.5 µm using Erbium-doped photonic crystals fibers [8]. However, no monolithic ChG laser 

has been demonstrated or investigated thus far.  

MIR photoluminescence was observed for bulk Erbium-doped GLS at 4.5 µm through the transition between 
4
I9/2 and 

4
I11/2 energy levels [9]. Compared to other ChGs, GLS showed the capability of hosting relatively high 

Erbium concentrations (2.8 × 10
20

 ions/cm
3
) without suffering from luminescence quenching [9]. Nevertheless, 

because of the small emission cross section of this transition (2.5 × 10
-21

 cm
2
), the maximum possible gain in GLS is 

limited to less than 4 dB/cm. For lasing to be possible under this gain limitation, resonators with minimum Q factors 

of 3.5 × 10
4
 are required. Recently, ChG micro-disks with Q factors in excess of 10

5
 at 1.55 μm have been 

demonstrated by a lift-off and subsequent thermal reflow process [10]. This is a key enabler for fabricating 

monolithic laser sources given the aforementioned specification requirements. The subsequent text discusses the 

possibility of lasing at 4.5 µm by pumping Erbium-doped GLS micro-disk with 800 nm pump source. 

 

2. Simulation model and results 

 
Fig. 1. Laser configuration consists of a micro-disk with input pump waveguide and output signal waveguide.  κ2 is the power coupling 

coefficient between the bus waveguides and the disk, and P and S stands for the pump and signal, respectively. 

The model developed consists of a pump and signal light which are introduced and collected from the disk using 

separate bus waveguides as illustrated in Fig. 1. The calculations considered: 1) 800 nm pump wavelength and 4.5 

µm signal wavelength; 2) refractive indices of 2.42 and 2.35 at the pump and signal wavelengths, respectively were 

obtained by fitting experimental data [11] to a Cauchy relation; 3) Erbium doping of 2.8 × 10
20

 cm
-3

; 4) transverse 

electric (TE) polarization modes, with dominant electric component parallel to the disk plane, with first order planar 

index, with single intensity peak in the direction normal to the disk plane,  of a disk with 80 µm diameter and 600 
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nm thickness were included in our calculations; 5) because of the high photon density in the disk, cavity 

enhancement was ignored; 6) unidirectional propagation was considered and modes splitting effect [12] was 

neglected. 

The solutions of the fundamental signal mode and the pump modes with radial orders, number of intensity peaks 

in the disk radial direction, up to eight were calculated for the disk cross section in Fig. 2. A large diameter of 80 

microns was used to eliminate the signal radiation losses. Having azimuthal symmetry, two-dimensional solution 

was calculated for the disk cross section along the radial and planar directions. A full-vectorial finite difference 

mode solver on FIMMWAVE [13] was used.  

 
Fig. 2. The micro-disk material cross section showing the CaF2 substrate, Erbium-doped GLS coating layer and disk A CaF2 substrate was used 

for its low absorption in the MIR regime. As CaF2 can be attacked by moisture, a GLS thin film was taken into account to coat the substrate. 

Rosenbrock iterative method was used to solve Erbium rate equations [14]. Using the obtained population 

distribution of the ions, the signal gain and Erbium absorption of the pump light was computed. The radiation losses 

were quantified using perfectly matched layer. Volume current formulation [12] was used to estimate the scattering 

losses for the pump and signal modes based on the roughness parameters of the demonstrated state of the art ChG 

micro-disk, 10 nm roughness variance and 150 nm roughness correlation length. These coefficients were obtained 

using preliminary experimental results; more investigations are taking place to enhance the accuracy of these values 

The bulk absorption coefficient of GLS (0.035 cm
-1

 at 800 nm, and 0.006 cm
-1

 at 4.5 µm) [15] was multiplied by the 

mode confinement factor to arrive at the modes absorption losses. The calculated Q factors of the pump and signal 

modes were 1.48×10
4
 and 1.53×10

6
, respectively. Since the pump modes have small wavelength they suffer from 

high scattering losses [12], more than 99% of the total losses, and gain very low Q factors. The 7th order pump 

mode was found to give the highest possible signal gain; hence it was chosen to pump the disk. 

 

Fig. 3. Threshold pump power and slope efficiency dependence on the signal power coupling. (a) The continuous curve shows the basic case with 

scattering, for which the maximum slope efficiency is 1.26 × 10-4 with threshold of 0.5 mW and (b) The dashed lines show the performance with 
no scattering, for this case a maximum efficiency of 2.5% can be achieved with 0.02mW threshold.  

The calculated round trip absorption for the pump mode was ~ 75%. Therefore, a pump coupling coefficient ( 2
P ) 

of 0.25 would maximize the pump power accumulation (P/Pin) in the disk and minimize the needed input pump 

power. Using this value for pump coupling, the signal output power was quantified as a function of the pump power 
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and the signal coupling coefficient ( 2
S ) as elaborated in Fig. 3a. The output power peaks at the signal coupling 

coefficient of 4 × 10
-4

. As shown, this value of signal coupling gives an optimized performance for the micro-disk 

laser as it maximizes the slope efficiency (1.26 × 10
-4

) with a lasing threshold of 0.5 mW. Compared to a simulated 

efficiency of Erbium-doped GaGeSbS fiber [16], which can achieve ~ 15% efficiency, the predicted slope efficiency 

of the micro-disk is very small. However, fiber lasers require long lengths (tens of centimeters) and do not offer 

suitable solution for on chip applications. The reason of the low slope efficiency for the micro-disk case is the high 

scattering losses caused by the sidewalls roughness. Progress is taking place to eliminate these losses [17], for 

which, as shown in Fig. 3b, two orders of magnitude enhancement is possible. 
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